Package: imptree 0.5.1

imptree: Classification Trees with Imprecise Probabilities

Creation of imprecise classification trees. They rely on probability estimation within each node by means of either the imprecise Dirichlet model or the nonparametric predictive inference approach. The splitting variable is selected by the strategy presented in Fink and Crossman (2013) <http://www.sipta.org/isipta13/index.php?id=paper&paper=014.html>, but also the original imprecise information gain of Abellan and Moral (2003) <doi:10.1002/int.10143> is covered.

Authors:Paul Fink [aut, cre]

imptree_0.5.1.tar.gz
imptree_0.5.1.zip(r-4.5)imptree_0.5.1.zip(r-4.4)imptree_0.5.1.zip(r-4.3)
imptree_0.5.1.tgz(r-4.5-x86_64)imptree_0.5.1.tgz(r-4.5-arm64)imptree_0.5.1.tgz(r-4.4-x86_64)imptree_0.5.1.tgz(r-4.4-arm64)imptree_0.5.1.tgz(r-4.3-x86_64)imptree_0.5.1.tgz(r-4.3-arm64)
imptree_0.5.1.tar.gz(r-4.5-noble)imptree_0.5.1.tar.gz(r-4.4-noble)
imptree_0.5.1.tgz(r-4.4-emscripten)imptree_0.5.1.tgz(r-4.3-emscripten)
imptree.pdf |imptree.html
imptree/json (API)

# Install 'imptree' in R:
install.packages('imptree', repos = c('https://paul-fink.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/paul-fink/imptree/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

Conda:

cpp

2.90 score 16 scripts 133 downloads 4 exports 1 dependencies

Last updated 6 years agofrom:a1867d73bd. Checks:1 OK, 11 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 05 2025
R-4.5-win-x86_64NOTEMar 05 2025
R-4.5-mac-x86_64NOTEMar 05 2025
R-4.5-mac-aarch64NOTEMar 05 2025
R-4.5-linux-x86_64NOTEMar 05 2025
R-4.4-win-x86_64NOTEMar 05 2025
R-4.4-mac-x86_64NOTEMar 05 2025
R-4.4-mac-aarch64NOTEMar 05 2025
R-4.4-linux-x86_64NOTEMar 05 2025
R-4.3-win-x86_64NOTEMar 05 2025
R-4.3-mac-x86_64NOTEMar 05 2025
R-4.3-mac-aarch64NOTEMar 05 2025

Exports:imptreeimptree_controlnode_imptreeprobInterval

Dependencies:Rcpp